

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus			
Course Code	Course Name	Credits	Contact Hours
0401353	Fields and Waves	3	3 T

INSTRUCTOR/COORDINATOR	
Name	Dr. Rula Alrawashdeh
Email	rular18@mutah.edu.jo rularsr18@gmail.com
Office Hours	11:00 am-12:30 pm (Mon, Wed)

TEXTBOOK		
Title	Field and wave electromagnetic	
Author/Year/Edition	David. K. Cheng /1989/ 2nd Ed	
Other Supplemental Materials		
Title	Elements of Electromagnetics	
Author/Year/Edition	Matthew Sadiku/ 2018/7th Edition	

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

ollowing subjects are discussed in this course:

ell's equations and time-varying fields, plane electromagnetic waves, power radiation, power ion and transmission, normal and oblique incidence and theory and applications of transmission Smith chart and matching circuits.

B. Pre-requisites (P) or Co-requisites (C)

Electromagnetics (0401252) (P)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

<u>CLO1:</u> Understand the plane wave components and propagation of waves in different (lossless and lossy) media [1].

<u>CLO2</u>: **Understand** the basic principle of operation of transmission lines [1].

<u>CLO3</u>: Study the structure and applications of different types of transmission lines [1].

CLO4: Study the Smith chart and **understand** how to use it for lossless lines calculations [1]

<u>CLO5</u>: Understand the principle of impedance matching and study different matching techniques [1].

B. Student Learning Outcomes (SOs) Addressed by the Course						
1	2	3	4	5	6	7
✓						

BRIEF LIST OF TOPICS TO BE COVERED		
List of Topics	No. of Weeks	Contact Hours
Chapter 1: Maxwell's equations and time varying fields.	2	6
Chapter 2: Plane Electromagnetic waves	3	9
Chapter 3: Theory and applications of transmission line		9
Chapter 4: Smith Chart	3	9
Chapter 5: Matching circuits	3	9
Total	14	42

EVALUATION			
Assessment Tool	Due Date	Weight (%)	
Mid Exam	According to the university calendar	30	
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20	
Final Exam	According to the university calendar	50	

ABET's Students Learning Outcomes (Criterion # 3)			
	Relationship to program outcomes		
ABET 1-7		Engineering Student Outcomes	
1		an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3		an ability to communicate effectively with a range of audiences.	
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
7		an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	